Abstract

We present a fully tunable multistage narrowband optical pole-zero notch filter that is fabricated in a silicon complementary metal oxide semiconductor (CMOS) foundry. The filter allows for the reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more notches simultaneously. It is constructed using a Mach-Zehnder interferometer (MZI) with cascaded tunable all-pass filter (APF) ring resonators in its arms. Measured filter nulling response exhibits ultranarrow notch 3 dB BW of 0.6350 GHz, and nulling depth of 33 dB. This filter is compact and integrated in an area of 1.75 mm2. Using this device, a novel method to cancel undesired bands of 3 dB bandwidth of < 910 MHz in microwave-photonic systems is demonstrated. The ultranarrow filter response properties have been realized based on our developed low-propagation loss silicon channel waveguide and tunable ring-resonator designs. Experimentally, they yielded a loss of 0.25 dB/cm and 0.18 dB/round trip, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.