Abstract
Free-space laser communication systems are increasingly implemented on state of the art satellites for their high-speed connectivity. This work outlines a demonstration of the Modular, Agile, Scalable Optical Terminal (MAScOT) we have developed to support Low-Earth Orbit (LEO) to deep-space communication links. In LEO, the MAScOT will be implemented on the International Space Station to support the Integrated Laser Communications Relay Demonstration (LCRD) LEO User Modem and Amplifier Terminal (ILLUMA-T) program. ILLUMA-T's overarching objective is to demonstrate high bandwidth data transfer between LEO and a ground station via a geosynchronous (GEO) relay satellite. Outside of LEO, the MAScOT will be implemented on the Artemis-II mission to demonstrate high data rate optical communications to and from the moon as part of the Optical to Orion (O2O) program. Both missions leverage the same modular architecture despite varying structural, thermal, and optical requirements. To achieve sufficient performance, the terminal relies on a nested tracking loop to realize sub-arcsecond pointing across a ±120 ° elevation and ±175° azimuth field of regard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.