Abstract

Graphene hot-electron bolometer (HEB) detectors, with weak electron–phonon interaction and a wide working temperature range, are of particular interest for terahertz (THz) applications including astronomy. In this paper, we report on the performance of a zero-biased THz HEB detector using Johnson noise thermometry based on bilayer graphene (BLG) of high charge carrier density. Two BLG HEB devices with respective normal-metal and superconducting electrodes are compared particularly for their thermal conductance and detection sensitivity (noise equivalent power, NEP) in a low-temperature regime (0.3–10 K). With electron out-diffusion largely suppressed by Andreev reflection, the device with superconducting electrodes outperforms the device with normal-metal electrodes, giving an electrical NEP of 15 fW/Hz0.5 and a dynamic range of 47 dB at 0.3 K. Moreover, its optical coupling efficiency is found to be 58% and can reach as high as 92% with the optical losses of the measurement system calibrated out. Graphene detectors of this kind can achieve better detection performance given lower readout noise and decreased electron–phonon thermal conductance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call