Abstract

We demonstrate a trapped-ion entangling-gate scheme proposed by Bermudez etal. [Phys. Rev. A 85, 040302 (2012)]. Simultaneous excitation of a strong carrier and a single-sideband transition enables deterministic creation of entangled states. The method works for magnetic field-insensitive states, is robust against thermal excitations, includes dynamical decoupling from qubit dephasing errors, and provides simplifications in experimental implementation compared to some other entangling gates with trapped ions. We achieve a Bell state fidelity of 0.974(4) and identify the main sources of error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.