Abstract
Advances in computing are enabling atmospheric models to operate at increasingly fine resolution, giving rise to more variations in the underlying orography being captured by the model grid. Consequently, high-resolution models must overcome the problems associated with traditional terrain-following approaches of spurious winds and instabilities generated in the vicinity of steep and complex terrain. Cut-cell representations of orography present atmospheric models with an alternative to terrain-following vertical coordinates. This work explores the capabilities of a cut-cell representation of orography for idealized orographically forced flows. The orographic surface is represented within the model by continuous piecewise bilinear surfaces that intersect the regular Cartesian grid creating cut cells. An approximate finite-volume method for use with advection-form governing equations is implemented to solve flows through the resulting irregularly shaped grid boxes. Comparison with a benchmark orographic test case for nonhydrostatic flow shows very good results. Further tests demonstrate the cut-cell method for flow around 3D isolated hills and stably resolving flows over very steep orography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.