Abstract

A compact forward-directed transmissive beam scanner operating at a wavelength of 1550nm was constructed and characterized. The scanner consists of two wire-grid polarizers (WGPs) surrounding a 45° Faraday rotator, causing incident light to reflect once from each WGP before transmitting through the second polarizer. Scanning is achieved by tilting one of the WGPs. Measured efficiency remained above 73% over a 90° forward scan range (-45∘ to +45∘) for vertically polarized incident light. Additionally, we measured the efficiency versus beam deflection for four different incident linear polarization configurations, three of which maintained >70% efficiency for deflection angles up to -60∘.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.