Abstract

This work presents the first demonstration of atmospheric temperature measurement using the differential absorption lidar (DIAL) technique. While DIAL is routinely used to measure atmospheric gases such as ozone and water vapor, almost no success has been found in using DIAL to measure atmospheric temperature. Attempts to measure temperature using a well-mixed gas like oxygen (O2) have largely failed based on a need for quantitative ancillary measurements of water vapor and atmospheric aerosols. Here, a lidar is described and demonstrated that simultaneously measures O2 absorption, water vapor number density, and aerosol backscatter ratio. This combination of measurements allows for the first measurements of atmospheric temperature with useful accuracy. DIAL temperature measurements are presented to an altitude of 4 km with 225 m and 30 min resolution with accuracy better than 3K. DIAL temperature data is compared to a co-located Raman lidar system and radiosondes to evaluate the system's performance. Finally, an analysis of current performance characteristics is presented, which highlights pathways for future improvement of this proof-of-concept instrument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.