Abstract

We demonstrate a single-stage all-fiber nanosecond amplifier with a total average power of greater than 1.4 kW by employing what we believe to be a novel multi-cavity passively Q-switched fiber laser as the seed laser. The multi-cavity seed laser adopts a piece of Yb-doped fiber (YDF) as saturable absorber (SA), and it includes two external cavities resonating at 1030 nm and an internal cavity working at 1064 nm, respectively. Using such a scheme, a stable dual-channel laser output with a total average power of >35 W, a pulse width of 45 ns, and an optical conversion efficiency of 72% operating at 1064 nm is achieved. By power scaling the multi-cavity seed laser, a dual-channel single-stage nanosecond amplifier is obtained with a single-port average power of exceeding 700 W and a pulse energy of about 7.3 mJ. To the best of our knowledge, this work is the highest average power and optical conversion efficiency for passively Q-switched all-fiber laser employing SA fiber, and the highest average power for a single-stage all-fiber nanosecond amplifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.