Abstract

In this work, 10 nm scandium-doped aluminum nitride (AlScN) capacitors are demonstrated for the construction of the selector-free memory array application. The 10 nm Al0.7Sc0.3N film deposited on an 8-inch silicon wafer with sputtering technology exhibits a large remnant polarization exceeding 100 µC/cm2 and a tight distribution of the coercive field, which is characterized by the positive-up-negative-down (PUND) method. As a result, the devices with lateral dimension of only 1.5 μm show a large memory window of over 250% and a low power consumption of ~40 pJ while maintaining a low disturbance rate of <2%. Additionally, the devices demonstrate stable multistate memory characteristics with a dedicated operation scheme. The back-end-of-line (BEOL)-compatible fabrication process, along with all these device performances, shows the potential of AlScN-based capacitors for the implementation of the high-density selector-free memory array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call