Abstract

A diamond Schottky p-i-n diode (SPIND) with the highest reported current density to date of ~116 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> is demonstrated, carrying a total current of ~1.32 A through a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$50-\mu \text {m}$ </tex-math></inline-formula> wide pseudo-vertical diode structure. The diamond SPIND also provides a maximum power handling capacity of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${1.85}~ \text {MW/c}\text {m}^{{2}}$ </tex-math></inline-formula> and a low specific ON-resistance <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{ \mathrm{ON}}S$ </tex-math></inline-formula> of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${0.05}~ \text {m}\Omega \cdot \text {cm}^{{{2}}}$ </tex-math></inline-formula> at a forward bias of ~16 V. The diamond Schottky p-i-n (SPIN) diode also shows excellent rectification characteristics with a current ON– OFF-ratio of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim {6} \times {10}^{{12}}$ </tex-math></inline-formula> . An analytical model including thermionic emission and space charge limited (SCL) current is presented together with Silvaco ATLAS Technology Computer Aided Design (TCAD) simulations to accurately reproduce the experimental <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${J}$ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics using multiple single-trap levels and other physical models emulating a real device. Theoretical calculations from the analytical model show that further improvement in the device turn on voltage and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{ \mathrm{ON}}{S}$ </tex-math></inline-formula> can be achieved by reducing the defect density and contact resistance in order to approach the ultimate performance in the Mott–Gurney SCL current regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.