Abstract

A Kelvin-Helmholtz instability is formed when two fluids of different densities exert a shear on one another at their interface when flowing in opposite directions. This paper presents a step-by-step guide for the design of a low-cost, small-scale, experimental tilt tube apparatus and a corresponding computational fluid dynamics (CFD) model that can be used to introduce the Kelvin-Helmholtz instability to undergraduate mechanical engineering students in several courses. A thermal-fluids laboratory course is taken by our fourth-year mechanical engineering students, and the overall variety of experiments has been limited by the cost of commercial teaching equipment. The tilt tube apparatus allows students to induce and record the Kelvin-Helmholtz instability, and no ongoing costs are involved in incorporating this experiment into the course. In our introductory CFD course, students perform CFD simulations as part of the design and analysis process. Developing a two-dimensional (2D) CFD model with two different fluids is well within their capabilities after completing initial software and simulation tutorial exercises and homework. Representative experiments were conducted with fresh water and salt water of different densities, and results showed that both the amplitude of the waves and the amount of time the instability was visible decreased with increasing salt water salinity. Results from a 2D CFD model developed in Ansys Fluent exhibited the same trends as the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.