Abstract

In 2015, the ROAD_IT project initiated the development and demonstration of an integrated and coherent IT process control system for the Flemish asphalt sector in order to modernize existing asphalt paving technologies and to obtain real-time data to monitor pavement behavior. One of the demonstration test tracks is CyPaTs, the construction of a bicycle path built in September 2017, using innovative technologies (www.uantwerpen.be/cypats). Five technologies are described in this contribution. An asphalt solar collector (PSC) with a piping system was installed directly in the asphalt. Cold water during summer season and hot water in winter season running through the pipes, keep the asphalt structure in a better temperature interval, avoiding rutting and cracking. Other advantages of this system are: energy gain, the prevention of damage to asphalt and the enhancement of traffic safety. The expected energy gain per year varies between 0.5 and 0.8 GJ/m2. About 20% of this energy is used for the operation of the asphalt collector itself. The remaining 80% can be used in nearby buildings. Fiber Bragg Grating (FBG) monitoring system was integrated in all three asphalt layers for the first time in Belgium. Two novel approaches of FBGs installation in asphalt layers were elaborated in this bicycle path: installation of FBGs in prefabricated asphalt specimens at the bottom of base layer and installation of FBGs in a saw cut of approx. 2mm in the previously constructed asphalt layer. The results proved a survival rate of the FBGs of 100%. The obtained strain and temperature data from FBG monitoring system has proved to be an excellent approach to establish and reflect the real condition of the asphalt pavement behaviour in time at different temperatures. The temperatures of the asphalt pavement during construction were followed up by the infrared thermography measurement techniques: a thermographic line-scanner (PAVE-IR by Moba AG) which was mounted at the back of the finisher and a hand-held IR camera (FLIR T640) was used for taking pictures every 2 meters. A real-time temperature contour plot of the pavement during construction was created to monitor asphalt pavement temperatures for quality inspection during the paving process or for later assessment. Two other non-destructive technologies for quality assessment were applied during this project. At first, the thickness was measured using aluminium plates and the MIT-SCAN T3. The obtained values were compared with topographic height measurements. Secondly, the density was measured with the PQI-380 non-nuclear density meter at several spots. The objective here is to check the density of the bicycle path, as well as the accuracy and investigate different parameters that influence the variations of the results, in particular the temperature dependency.

Highlights

  • In most sectors, IT is successfully implemented to optimize and control processes

  • Fiber Bragg Grating (FBG) monitoring system was integrated in all three asphalt layers for the first time in Belgium

  • The results proved a survival rate of the FBGs of 100%

Read more

Summary

Introduction

IT is successfully implemented to optimize and control processes. These real-time applications provide improved process management. In 2015, the ROAD_IT project (https://www.uantwerpen.be/en/research-groups/emib/projectspublications/road-engineering/road-it/) initiated the development and demonstration of an integrated and coherent IT process control systems for the Flemish asphalt sector in order to modernize existing asphalt paving technologies, obtain real-time data to process control and monitor pavement behaviour, and generate data storage for use in future e.g. optimization of material use for reclaiming. It’s a unique project, because of two reasons: first, several new technologies were demonstrated for the road construction sector, and second, it allows several projects to be continued by our researchers for a long time after the construction. Five innovative technologies were implemented in the CyPaTs bicycle path which are described in this paper

Innovative technologies
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.