Abstract

PurposeThe purpose of this paper is to demonstrate the existence of one suitable oxide phase concurrent with deposition for fabricating a titanium (Ti)/p-silicon (Si) Schottky diode by direct current (DC) magnetron sputtering method.Design/methodology/approachIn this paper, a Ti/p-Si Schottky diode has been fabricated by depositing a Ti film on p-Si substrate by DC magnetron sputtering. Electrical properties of a Schottky junction include three main parameters: ideality factor (n), series resistance (Rs) and barrier height (Φb), which were determined by three analysis methods: current–voltage (I-V), Cheung function and Norde function.FindingsAs result outcomes of the calculated values by three analysis methods, average values were obtained equal to 2.475, 27.07 kÙ and 0.88 ev. With comparing direct calculation of series resistance with the achieved average value of three analysis methods, it illustrates that without X-ray diffraction (XRD) analysis consideration, it’s possible to deduce at least one oxide phase forming on the Ti layer.Originality/valueThis work fabricates Ti/p-Si Schottky diode by DC magnetron sputtering. By use of downward-arch region of the LnI-V curve, two functions that are known as Norde and Cheung were made with which this study applies these functions and linear region of LnI-V plot each values of n, Φb and Rs, except n calculated two times. With comparison of calculated values from two parts of plot, it is clear that Norde and Cheung functions are accurate and the applied method is correct. Also, with direct calculation, the value of Rs and as compared with result from analysis, this study has proved that without XRD plot, certainly simultaneity deposition at least one oxide phase was forming on Ti layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.