Abstract

Under the neutral theory, species with larger effective population size are expected to harbor higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere, and it consequently plays a major role in European forestry. Here, we use whole-genome resequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an corresponding enormous current population size, our analyses find that genetic diversity of P. abies is low across a number of populations (π = 0.0049 in Central-Europe, π = 0.0063 in Sweden-Norway, π = 0.0063 in Finland). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.

Highlights

  • Explaining the distribution of genetic diversity within and between species is one of the major goals of evolutionary biology (Begun et al 2007; Wang et al 2016)

  • To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies

  • We successively performed polymerase chain reaction (PCR) duplication removal, local realignment, and variant calling resulting in 20 raw VCF files containing a total of 749.6 million variants of which 709.5 million were single-nucleotide polymorphism (SNP)

Read more

Summary

Introduction

Explaining the distribution of genetic diversity within and between species is one of the major goals of evolutionary biology (Begun et al 2007; Wang et al 2016). This question has several important applications (Ellegren and Galtier 2016) including the conservation of endangered species (Forcada and Hoffman 2014), and development of breeding strategies in crops (Khodadadi et al 2011) and farm animals (Edea et al 2015).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.