Abstract

The selection of dispersion is a classical problem in ecology and evolutionary biology. Deterministic dynamical models of two competing species differing only in their passive dispersal rates suggest that the lower mobility species has a competitive advantage in inhomogeneous environments, and that dispersion is a neutral characteristic in homogeneous environments. Here we consider models including local population fluctuations due to both individual movements and random birth and death events to investigate the effect of demographic stochasticity on the competition between species with different dispersal rates. In this paper, the first of two, we focus on homogeneous environments where deterministic models predict degenerate dynamics in the sense that there are many (marginally) stable equilibria with the species' coexistence ratio depending only on initial data. When demographic stochasticity is included the situation changes. A novel large carrying capacity ([Formula: see text]) asymptotic analysis, confirmed by direct numerical simulations, shows that a preference for faster dispersers emerges on a precisely defined [Formula: see text] time scale. We conclude that while there is no evolutionarily stable rate for competitors to choose in these models, the selection mechanism quantified here is the essential counterbalance in spatially inhomogeneous models including demographic fluctuations which do display an evolutionarily stable dispersal rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.