Abstract

Gender and ethnicity are increasingly studied topics within I-O psychology, helpful for understanding the composition of collectives, experiences of marginalized group members, and differences in outcomes between demographics and capturing diversity at higher levels. However, the absence of explicit, structured, demographic information online makes applying these research questions to Big Data sources challenging. We highlight how deep neural networks can be used to infer demographics based on people's names, which are commonly found online (e.g., social media profiles, employee pages, and membership rosters), using broad international data to train and evaluate the effectiveness of these models and find that validity coefficients meet minimum reliability thresholds at the individual level ( rgender = .91, rethnicity = .80) highlighting their ability to contextualize and facilitate Big Data research. Using empirical data extracted from databases, websites, and mobile apps, we highlight how these models can be applied to large organizational data sets by presenting illustrative demonstrations of research questions that incorporate the information provided by the model. To promote broader usage, we offer an online application to infer demographics from names without requiring advanced programming knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.