Abstract

Using data generated by generative adversarial networks or three-dimensional (3D) technology for face recognition training is a theoretically reasonable solution to the problems of unbalanced data distributions and data scarcity. However, due to the modal difference between synthetic data and real data, the direct use of data for training often leads to a decrease in the recognition performance, and the effect of synthetic data on recognition remains ambiguous. In this paper, after observing in experiments that modality information has a fixed form, we propose a demodalizing face recognition training architecture for the first time and provide a feasible method for recognition training using synthetic samples. Specifically, three different demodalizing training methods, from implicit to explicit, are proposed. These methods gradually reveal a generated modality that is difficult to quantify or describe. By removing the modalities of the synthetic data, the performance degradation is greatly alleviated. We validate the effectiveness of our approach on various benchmarks of large-scale face recognition and outperform the previous methods, especially in the low FAR range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.