Abstract

To improve the performance of systems, optimization has been the prevailing approach in the past. However, the approach faces challenges when multiple goals shall be simultaneously achieved. For illustration, we study a multi-agent system, where agents have a plurality of different, and mutually inconsistent goals. We then allow agents in the system to vote on which traffic signal controllers, which were trained on different goals using deep reinforcement learning, would control the intersection. Taking decisions based on suitable voting procedures turns out to lead to favorable solutions, which perform highly for several goals rather than optimally for one goal and poorly for others. This opens up new opportunities for the management or even self-governance of complex systems that require the consideration and achievement of multiple goals, such as many systems involving humans. Here, we present results for traffic flows in urban street networks, which suggest that “democratizing traffic” would be a promising alternative to centralized control of traffic flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.