Abstract

Deep learning-based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling "hands-on" education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.