Abstract

Recent breakthroughs in deep learning are enabling new ways of interpreting and analyzing sensor measurements to extract high-level information needed by mobile and IoT apps. Thus for improving usability, it is essential that the deep models are embedded in next generation mobile and IoT apps, where inference tasks are often challenging due to high measurement noise. However, deep learning-based models are yet to become mainstream on embedded platforms, where device resources, e.g., memory, computation and energy, are limited. In this demonstration, we present DeepX, a software accelerator that allows running deep neural network (DNN) and deep convolutional neural network (CNN) efficiently on resource constrained mobile platforms. DeepX significantly lowers device resource requirements during deep model- based inferencing, which currently act as the severe bottleneck to wide-scale mobile adoption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.