Abstract

Precise calling of promiscuous adenosine-to-inosine RNA editing sites from transcriptomic datasets is hindered by DNA mutations and sequencing/mapping errors. Here, we present a stepwise computational framework, called DEMINING, to distinguish RNA editing and DNA mutations directly from RNA sequencing datasets, with an embedded deep learning model named DeepDDR. After transfer learning, DEMINING can also classify RNA editing sites and DNA mutations from non-primate sequencing samples. When applied in samples from acute myeloid leukemia patients, DEMINING uncovers previously underappreciated DNA mutation and RNA editing sites; some associated with the upregulated expression of host genes or the production of neoantigens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.