Abstract

5-Demethylnobiletin (5-DMN), a hydroxylated polymethoxyflavone (OH-PMF) identified in aged citrus peels, has demonstrated health benefiting effects in previous studies. 5-DMN undergoes biotransformation in vivo, yielding 5,3'-didemethylnobiletin (5,3'-DDMN), 5,4'-didemethylnobiletin (5,4'-DDMN) and 5,3',4'-tridemethylnobiletin (5,3',4'-TDMN). However, the anti-cancer effects of 5-DMN and its in vivo metabolites against HepG2 cells remain unclear. In this study, an efficient chemical synthetic method was developed to obtain 5-DMN and its 3 metabolites, and their molecular structures were confirmed by 1H NMR and LC-MS. Cytotoxicity, cell cycle arrestment, apoptosis and caspase-3 expression were investigated to evaluate the anti-liver cancer effects of these OH-PMFs on HepG2 cells. The results showed that all 4 compounds inhibited the proliferation of HepG2 cells in a concentration-dependent manner. Their anti-proliferative activity was exerted through inducing G2/M phase arrestment, cell apoptosis and promoting expression of a key apoptotic protein called cleaved caspase-3. Our results indicated that 5,3'-DDMN and 5,3',4'-TDMN showed a stronger inhibitory activity on cell proliferation than 5-DMN, followed by 5,4'-DDMN. The expression of cleaved caspase-3 was the highest in cells treated with 5,4'-DDMN, implying that the apoptosis induced by other OH-PMFs might be mediated by other apoptotic execution proteins. Our research reveals the application potential and scientific evidence for the production and functionality of OH-PMFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.