Abstract

BackgroundAcute pneumonia induced by Pseudomonas aeruginosa is characterized by massive infiltration of inflammatory cell and the production of reactive oxygen species (ROS), which lead to severe and transient pulmonary inflammation and acute lung injury. However, P.aeruginosa infection is resistant to multiple antibiotics and causes high mortality in clinic, the search for alternative prophylactic and therapeutic strategies is imperative. PurposeThis study was aimed to investigate the anti-inflammatory and antioxidant effects of DMB, a novel derivative of berberine, and explore the role of AIM2 inflammasome in P. aeruginosa-induced acute pneumonia. MethodsAcute pneumonia mice were established by tracheal injection of P. aeruginosa suspension. Pathological changes of lung tissue were observed by its appearance and H&E staining. The lung coefficient ratio was measured to evaluate pulmonary edema. Inflammatory factors were detected by qRT-PCR, western blotting and immunohistochemistry. ROS and other indicators of oxidative damage were analyzed by flow cytometry and specific kit. Proteins related to AIM2 inflammasome were detected by western blotting. ResultsCompared with the P. aeruginosa-induced group, DMB ameliorated pulmonary edema, hyperemia, and pathological damage based on its appearance and H&E staining in DMB groups. First, DMB attenuated the inflammatory response induced by P.aeruginosa. Compared with the P. aeruginosa-induced group, the lung coefficient ratio was decreased by 31.5%, the MPO activity of lung tissue was decreased by 44.0%, the mRNA expression levels of TNF-α, IL-1β and IL-6 were decreased by 64.8%, 51.2% and 64.0% respectively, and those protein expression levels were decreased by 40.1%, 42.8% and 47.8% respectively, and the number of white blood cells, neutrophils and monocytes were decreased by 53.5%, 29.4% and 13.7% in high dose (200 mg/kg) DMB group. Second, DMB alleviates oxidative stress in the lung tissue during P. aeruginosa-induced acute pneumonia. Compared with the P. aeruginosa-induced group, the level of GSH was increased by 42.5% and MDA was decreased by 49.5% in high dose DMB group. Moreover, the western blotting results showed that DMB markedly suppressed the expression of AIM2, ASC, Cleaved caspase1 and decreased the secretion of IL-1β. Additionally, these results were also confirmed by in vitro experiments using MH-S and BEAS-2B cell lines. ConclusionsTaken together, these results indicated that DMB ameliorates P. aeruginosa-induced acute pneumonia through anti-inflammatory, antioxidant effects, and inhibition of AIM2 inflammasome activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.