Abstract
Cancer cells and tissues exhibit genome wide hypomethylation and regional hypermethylation. CpG-methylation of DNA ((Me)CpG-DNA) is defined as the formation of a C-C covalent bond between the 5'-C of cytosine and the -CH(3) group of S-adenosylmethionine. Removal of the sole -CH(3) group from the methylated cytosine of DNA is one of the many ways of DNA-demethylation, which contributes to activation of transcription. The mechanism of demethylation, the candidate enzyme(s) exhibiting direct demethylase activity and associated cofactors are not firmly established. Genome-wide hypomethylation can be obtained in several ways by inactivation of DNMT enzyme activity, including covalent trapping of DNMT by cytosine base analogues. Removal of methyl layer could also be occurred by excision of the 5-methyl cytosine base by DNA glycosylases. The importance of truly chemically defined direct demethylation of intact DNA in regulation of gene expression, development, cell differentiation and transformation are discussed in this contribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.