Abstract

Demetalization of heavy oil through pyrolysis in the presence of subcritical water or supercritical water (SCW) was experimentally investigated. At a high water-to-oil ratio and high water density, the occurrence of pyrolysis can be transferred to the SCW phase. Driven by the π–π attractive interaction between aromatic sheets and the superb diffusivity in SCW, the coke-like self-assembly of metal-containing heavy aromatics occurs spontaneously and rapidly. The self-assembly behavior of aromatics in SCW depends not only on the thermodynamic state of SCW but also on the average scale of aromatics. With the aid of self-assembly in dense SCW, the condensation of metal-containing heavy aromatics, distributed mainly in a vacuum residue, to coke is significantly accelerated, by which the rate of demetalization is improved simultaneously. Owing to the preferential self-assembly of metal-rich heavy aromatics, an increasing yield of liquid products can also be obtained under an optimized SCW environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call