Abstract
BackgroundEarly identification of dementia is crucial for prompt intervention for high-risk individuals in the general population. External validation studies on prognostic models for dementia have highlighted the need for updated models. The use of machine learning in dementia prediction is in its infancy and may improve predictive performance. The current study aimed to explore the difference in performance of machine learning algorithms compared to traditional statistical techniques, such as logistic and Cox regression, for prediction of all-cause dementia. Our secondary aim was to assess the feasibility of only using clinically accessible predictors rather than MRI predictors.MethodsData are from 4,793 participants in the population-based AGES-Reykjavik Study without dementia or mild cognitive impairment at baseline (mean age: 76 years, % female: 59%). Cognitive, biometric, and MRI assessments (total: 59 variables) were collected at baseline, with follow-up of incident dementia diagnoses for a maximum of 12 years. Machine learning algorithms included elastic net regression, random forest, support vector machine, and elastic net Cox regression. Traditional statistical methods for comparison were logistic and Cox regression. Model 1 was fit using all variables and model 2 was after feature selection using the Boruta package. A third model explored performance when leaving out neuroimaging markers (clinically accessible model). Ten-fold cross-validation, repeated ten times, was implemented during training. Upsampling was used to account for imbalanced data. Tuning parameters were optimized for recalibration automatically using the caret package in R.Results19% of participants developed all-cause dementia. Machine learning algorithms were comparable in performance to logistic regression in all three models. However, a slight added performance was observed in the elastic net Cox regression in the third model (c = 0.78, 95% CI: 0.78–0.78) compared to the traditional Cox regression (c = 0.75, 95% CI: 0.74–0.77).ConclusionsSupervised machine learning only showed added benefit when using survival techniques. Removing MRI markers did not significantly worsen our model’s performance. Further, we presented the use of a nomogram using machine learning methods, showing transportability for the use of machine learning models in clinical practice. External validation is needed to assess the use of this model in other populations. Identifying high-risk individuals will amplify prevention efforts and selection for clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.