Abstract

To assess neurochemical deficits in patients with Parkinson disease (PD) associated dementia (PDD) in vivo. The authors performed combined PET with N-[11C]-methyl-4-piperidyl acetate (MP4A) and 18F-fluorodopa (FDOPA) for evaluation of cholinergic and dopaminergic transmitter changes in 17 non-demented patients with PD and 10 patients with PDD. Data were compared to 31 age-matched controls by a combined region-of-interest and voxel-based Statistical Parametric Mapping analysis. The striatal FDOPA uptake was significantly decreased in PD and PDD without differences between the groups. The global cortical MP4A binding was severely reduced in PDD (29.7%, p < 0.001 vs controls) and moderately decreased in PD (10.7%, p < 0.01 vs controls). The PDD group had lower parietal MP4A uptake rates than did patients with PD. Frontal and temporo-parietal cortices showed a significant covariance of striatal FDOPA reduction and decreased MP4A binding in patients with PDD. While non-demented patients with Parkinson disease had a moderate cholinergic dysfunction, subjects with Parkinson disease associated dementia (PDD) presented with a severe cholinergic deficit in various cortical regions. The finding of a closely associated striatal FDOPA and cortical MP4A binding reduction suggests a common disease process leading to a complex transmitter deficiency syndrome in PDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.