Abstract

We study finite–dimensional respresentations of twisted current algebras and show that any graded twisted Weyl module is isomorphic to level one Demazure modules for the twisted affine Kac-Moody algebra. Using the tensor product property of Demazure modules, we obtain, by analyzing the fundamental Weyl modules, dimension and character formulas. Moreover, we prove that graded twisted Weyl modules can be obtained by taking the associated graded modules of Weyl modules for the loop algebra, which implies that its dimension and classical character are independent of the support and depend only on its classical highest weight. These results were previously known for untwisted current algebras and are new for all twisted types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.