Abstract

This paper analyzes the mode provisioning and scheduling, in light of the aggregation over distributed energy storage system for improving the interactions and energy trading decisions under the smart grid networks. Further a new smart power system equipped with energy storage devices yields efficiency and robustness in a novel structure, which can identify and react on the energy market equilibrium in a timely manner. An energy consumption and stochastic linear programming game in the distributed structure is proposed for the energy payments, so that scheduling for appliances and storage devices can be used here as well. Furthermore, it is easy to implement a proposed two-phase DSLPM (distributed stochastic linear programming management) algorithm to bring about optimality with both energy provider and users to approach payoff sharing under uncertainty. With the incomplete information, a price equilibrium scheme is proposed. Experimental results are shown to verify the consumed energy, payment, and convergence properties of the proposed models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.