Abstract

In recent years, environmental concerns about climate change and global warming have encouraged countries to increase investment in renewable energies. As the penetration of renewable power goes up, the intermittency of the power system increases. To counterbalance the power fluctuations, demand-side flexibility is a workable solution. This paper reviews the flexibility potentials of demand sectors, including residential, industrial, commercial, and agricultural, to facilitate the integration of renewables into power systems. In the residential sector, home energy management systems and heat pumps exhibit great flexibility potential. The former can unlock the flexibility of household devices, e.g., wet appliances and lighting systems. The latter integrates the joint heat–power flexibility of heating systems into power grids. In the industrial sector, heavy industries, e.g., cement manufacturing plants, metal smelting, and oil refinery plants, are surveyed. It is discussed how energy-intensive plants can provide flexibility for energy systems. In the commercial sector, supermarket refrigerators, hotels/restaurants, and commercial parking lots of electric vehicles are pointed out. Large-scale parking lots of electric vehicles can be considered as great electrical storage not only to provide flexibility for the upstream network but also to supply the local commercial sector, e.g., shopping stores. In the agricultural sector, irrigation pumps, on-farm solar sites, and variable-frequency-drive water pumps are shown as flexible demands. The flexibility potentials of livestock farms are also surveyed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call