Abstract

We study the problem faced by an operator who aims to allocate a certain amount of load adjustment (either load reduction or increment) to multiple consumers so as to minimize the aggregate consumer disutility. We propose and analyze a simple uniform-price market mechanism where every consumer submits a single bid to choose a supply function from a group of parameterized ones. These parameterized supply functions are designed to ensure that every consumer's load adjustment is within an exogenous capacity limit that is determined by the current power system operating condition. We show that the proposed mechanism yields bounded efficiency loss at a Nash equilibrium. In particular, the proposed mechanism is shown to achieve approximate social optimality at a Nash equilibrium, if the total capacity limit excluding the consumer with the largest one is much larger than the total amount of load to be adjusted. We complement our analysis through numerical case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.