Abstract
In this paper, an improved optimization model is proposed for demand response in a remote off-grid microgrid local on the Dongfushan Island, China to develop the energy dispatch and economic benefits considering different electricity price under different seasonal meteorological conditions. First, the seasonal electricity pricing model is built with the power generation of renewable sources in different seasonal meteorological conditions. Second, satisfaction is evaluated by the seasonal electricity price and the power consumption pattern. Improved Pareto optimum based on a distributed learning algorithm is proposed to maximize the satisfaction so that the electricity bills of consumers are reduced and the profits of the retailer is increased. The performance of the proposed optimization model is validated in the HOMER software and Matlab. Simulation results show that the electricity bills of consumers are lower by using the proposed method. For the retailer, the generation cost saves 1216$, and the utilization of renewable energy increased by 3.9% in January 2011.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.