Abstract

The study carries out an economic technical analysis of the effect of the penetration of electric vehicles in a microgrid with various types of renewable energy sources and loads of different nature. The electric vehicle has been modeled through its main component, the battery, by using criteria of randomness in the entry and type of load used by each vehicle. Following this process, the energy demand curves and voltage profiles resulting from such penetration were obtained. In a second phase, three demand response programs based on incentives and prices were applied, and the impact of these decisions on the system through new demand curves and voltage profiles were quantified, the comparison with the base scenario is also carried out. In its final stage, the different scenarios proposed are evaluated financially and the NPV financial index is calculated, which is included in a binary-type optimization model, allowing through simulations to make decisions about the best demand response program alternative for the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.