Abstract

The risk imposed by the stochastic nature of wind energy sources has always been a major barrier despite their proliferation in power systems. To further penetrate these sources, this paper draws upon dynamic prices, which realize demand response potentials along with decimating the risk involved. To do so, a model is first established to study the impacts of activating demand response, on the risk index in a system with a high penetration of wind resources. Then, the model is used to estimate the extra wind capacity that can be hosted by the system such that the risk remains within the acceptable range. The well-being indices are calculated via sequential Monte Carlo simulation approach and Fuzzy theory. The demand response with dynamic prices is modeled by self and cross elasticity coefficients of different load sectors. The performance and applicability of the proposed model are verified through simulations on the IEEE Reliability Test System. (IEEE-RTS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.