Abstract

Data analytics in smart grids can be leveraged to channel the data downpour from individual meters into knowledge valuable to electric power utilities and end-consumers. Short-term load forecasting (STLF) can address issues vital to a utility but it has traditionally been done mostly at system (city or country) level. In this case study, we exploit rich, multi-year, and high-frequency annotated data collected via a metering infrastructure to perform STLF on aggregates of power meters in a mid-sized city. For smart meter aggregates complemented with geo-specific weather data, we benchmark several state-of-the-art forecasting algorithms, including kernel methods for nonlinear regression, seasonal and temperature-adjusted auto-regressive models, exponential smoothing and state-space models. We show how STLF accuracy improves at larger meter aggregation (at feeder, substation, and system-wide level). We provide an overview of our algorithms for load prediction and discuss system performance issues that impact real time STLF. ® 2014 Alcatel-Lucent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call