Abstract

Due to large number of doors used housing and construction products, the greenhouse gas (GHG) footprint related to door manufacturing is an interesting topic. Timber and bamboo products can reduce GHG emission due to their biogenic carbon storage via photosynthesis. The scientific evidence on the climate impact using wood-based door (WBD) and bamboo-based door (BBD) to replace steel-based door (SBD) is limited. In this study, life cycle assessments for WBD, BBD, SBD were conducted to evaluate the carbon impacts of raw materials, production, transport, and end-of-life stages. The GHG footprint of WBD, BBD, and SBD ranged from 270.42 to 363.24, 285.31–398.31, and 983.8–986.76 kg CO2 e/m3, respectively, indicating that the bio-based doors exhibited lower energy consumption and GHG emissions. The raw material stage (484.78–569.34 kg CO2 e/m3) was identified as a major source of GHG emissions throughout the product life cycle, while hot-pressing and coating processes were identified as emission hotspots in the production stage. Regarding biogenic carbon storage, the use of bio-based materials instead of steel-based materials for fire door manufacturing significantly reduced emissions. Considering disposal methods, recycling and incineration should be prioritized over landfills. Future research should focus on field survey in raw material stage, along with conducting a technical and economic analysis. The results provide valuable guidance for selecting doors in China in term of biogenic carbon storage and resource protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.