Abstract
According to EIA, the Heating Ventilation and Air Conditioning (HAVC) systems account for about 25% of the U.S.’s total commercial building’s energy use. Therefore, advanced modeling and optimization methods of the system components and operation offer great ways to reduce energy consumption in all types of buildings and mainly commercial buildings. This research introduced an innovative integrated two-level optimization technique for the HVAC system to reduce the total energy consumption while improving the indoor thermal comfort level. The process uses actual system performance data collected for the building automation systems (BAS) to create accurate component modeling and optimization process as the first level of optimization (MLO). Artificial neural networks were chosen to be the tool used to serve the process of modeling. The second optimization level utilizes the whole system-level optimization technique (SLO) using a genetic algorithm (G.A.). The proposed two-levels optimization technique will optimize the system setpoints, the supply air temperature, duct static pressure, minimum zone air flowrates, and minimum outdoor air ventilation rate. The proposed technique has contributed to the field of modeling and optimization of HVAC systems through several new contributions. (1) Implementing the demand control methodology with the optimization process to modify the electricity consumption power profile when the demand signal is received. (2) Implement the occupancy schedule inputs into the optimization process to adjust the ventilation airflow rates accordingly. (3) Implement the real-time zone occupancy sensor readings and adjust the zone’s ventilation flowrates and minimum flowrates. (4) Lastly, implementing the method of zone minimum air flowrates setpoint rests to reduce reheat requirements. The proposed optimization process was tested and validated, resulting in savings in the total energy consumed by the chilled water VAV system by 13.4%, 22.4 %, followed by 31% for July, February, and October, respectively.
Highlights
Electricity and natural gas accounted for about 93% of the total energy consumed in commercial buildings in 2012
The proposed optimization process was tested and validated, resulting in savings in the total energy consumed by the chilled water VAV system by 13.4%, 22.4 %, followed by 31% for July, February, and October, respectively
Natural gas was the source of 32% of total energy end-use consumption in commercial buildings
Summary
Electricity and natural gas accounted for about 93% of the total energy consumed in commercial buildings in 2012. Natural gas was the source of 32% of total energy end-use consumption in commercial buildings. Electricity’s share of total energy end-use consumption in commercial buildings increased from 38% in 1979 to 61% in 2012. The heating, ventilation, and air condition systems account for about 25% of the total commercial building’s energy use in the U.S [1]. Advanced modeling and optimization methods of the system components and operation offer great ways to reduce energy consumption in all types of buildings and mainly commercial buildings. The final selected model can accurately deal with constraints, and uncertainties, control the timevarying applications and time delays, and handle a broad range of operating conditions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.