Abstract

The authors discuss the performance analyses of a novel demand assignment multiple access (DAMA) scheme addressing the special characteristics of the mobile radio service (MRS), and a new method for dynamically allocating a common pool of channels to both MRS and mobile telephone service (MTS) to improve channel utilization. The new DAMA scheme makes use of call queuing, batch processing, and pipelined signaling to minimize call setup overhead for MRS traffic. MRS call setup delays were analyzed by simulation modeling of a mobile satellite system (MSS) with many mobile voice-dispatch networks operating over a multiple spot beam satellite to investigate the effects of traffic volume, batch size, and batch service disciplines. A reserved channel margin algorithm for dynamic channel allocation was shown to be effective in harmonizing the different call setup performance requirements for MTS and MRS. Numerical results show that dynamic channel allocation applied to a common pool of 40 channels enables a 20-25% increase in the number of mobile terminals compared with a fixed allocation of 20 channels to each of the two services. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.