Abstract

This paper investigates magnet demagnetization characteristics of the modular permanent magnet machine. The influence of flux gaps on magnet flux density, losses distribution, torque and demagnetization are analyzed for different operating conditions. The magnet demagnetizations caused by three sources, such as the PM field, the armature field, and the magnet temperature rise, are individually investigated using the frozen permeability method. Furthermore, coupled electromagnetic (EM)-thermal modelling is also adopted in this paper to fully reveal the advantages of the modular machine in improving machine EM performances. This is essential due to the temperature-dependent properties of the machines, such as the magnet remanence, coercivity, and copper resistivity. For comparison propose, the EM performances with a particular focus on the demagnetization withstand capability for both the modular and non-modular machines are investigated based on the EM-thermal coupling. It is found that, compared to the non-modular machine, the modular machine can achieve higher torque, higher efficiency, and better demagnetization withstand capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.