Abstract
In order to explore the variation law of soil particle displacement and pile force around piles during penetration process, the DEM (Discrete Element Method) model is used to test the penetration of pile foundation in layered soft soil foundation. The variation law of pile penetration force, radial pressure at pile-soil interface, friction resistance at pile side, displacement field and force field between particles during penetration process is analyzed. Research shows: (1) The penetration force increases with the increase of penetration depth and pile diameter. The increase of pile diameter is beneficial to overcome the influence of unfavorable strata. (2) At the same penetration depth, with the continuous penetration of the pile body, the radial pressure gradually decreases, showing a significant degradation phenomenon. The reason for the degradation of lateral friction is essentially the degradation of the radial pressure. (3) The distribution of contact force chain in different soil layers is similar, but the range of action is different. The contact force in silt layer is obviously larger than that in silty clay layer. The compressive stress of the soil at the end of the pile transfers radially with tensile stress. With the increase of pile diameter, the compressive stress and tensile stress in soil layer are gradually increasing, and the influence range of compressive stress and tensile stress is also gradually increasing. (4) The displacement of the soil below the pile tip is triangular, and the soil at the pile tip is squeezed around under the action of the pile tip. The influence range of particle displacement in each soil layer is different, and the influence range of particle displacement in silt layer is obviously smaller than that in silty clay layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.