Abstract

The mixing of powders in a U-shape mixer is significantly influenced by the mixer design, especially impellers, but the studies on the mixing processes are still insufficient. In this study, the effect of impeller designs on mixing performance in an industrial-scale U-shaped ribbon mixer is studied using DEM simulations. Three impeller designs are studied: 2-bladed impeller spiralling in the same direction (i.e., Design I) and the opposite direction (i.e., Design II), and 4-bladed impeller (i.e., Design III). Different particle mixing behaviours in three different impeller designs are studied in aspects of mixing status, particle path line, velocity distribution, and forces. The radial direction has the highest dispersion coefficient while the axial direction has the lowest dispersion coefficient. Most particles in the mixers are imposed a weak force. Design III shows the best mixing performance among the three with the front-by-back and top-by-bottom loading used. Design II shows a better mixing performance used than Design I and III with the side-by-side loading but takes a longer time to reach the stable status. This work evaluates the effect of different impeller designs on the mixing performance in an industrial-scale U-shaped ribbon mixer and provides an effective way to assist industrial design in an economical and safe manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.