Abstract

A numerical model is proposed for the simulation of rock blasting. A bonded particle system is utilized to mimic the behavior of rock. The particles interact at the contact points through normal and shear springs to simulate rock elasticity. To withstand the deviatoric stresses, the particles are glued to each other. If the applied force exceeds the contact strength, local failure occurs and microcracks are developed in the synthetic rock. For simulation of gas flow, the smooth particle hydrodynamic method is implemented. The interaction of gas particles with the rock grains is assumed to follow a perfect plastic collision model in which the initial momentum of the colliding particles is preserved. A detailed examination of the interaction of gas with blast hole is investigated. It is shown that the proposed hybrid model is capable of simulating the induced shock waves in the gas together with wave propagation in the rock material. The model successfully mimics crack propagation in rock. In particular, the crushed zone around the borehole, radial cracks, and surface spalling are all captured successfully. The results of numerical analysis suggest that gas–rock interaction can, in fact, generate a few successive compressive waves in the rock specimen, causing further extension of radial cracks with time as the weaker secondary and tertiary waves interact with the crack tips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.