Abstract

The percolation of small particles through a periodic random loose packing of large beads is studied numerically with the Distinct Element Method. The representativity of periodic mono-sized sphere packing of varying system size was first studied by comparing their pore size distributions and tortuosities with those of a larger system, considered as an infinite medium. The results show that a periodic packing of size as low as 4-grain diameters gives a reasonable representation of the porous medium and allows reducing considerably the number of particles that has to be used in the simulations. The flow and clogging of small particles of varying concentrations and friction coefficients flowing through the former packing are then studied numerically. Results show that a steady state is rapidly reached where the mean velocity and mean vertical velocity of small particles are both constant. These mean velocities decrease with an increase in friction coefficient and in small particle concentration. The influence of the friction coefficient μ is much less marked for values of μ larger than or equal to 0.5. The distribution of small particles throughout the crossed packing becomes rapidly heterogeneous. Small particles concentrate in some pores where their velocity vanishes and where the density can reach values larger than the density of the random loose packing. The proportion of particles blocked in these pores varies linearly with concentration. Finally, the narrow throats of the porous medium responsible for blocking are identified and characterized for different values of the friction coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.