Abstract
The use of disposable masks, especially in the wake of the COVID-19 pandemic, has led to an increased focus on sustainable disposal and recycling methods. This study investigates the feasibility of integrating shredded mask materials into granular soils to enhance their mechanical properties for engineering applications. After validating the selection of Discrete Element Method (DEM) contact parameters through the conducted physical experiments, a comprehensive series of DEM simulations was performed to explore the effects of various mask contents on the mechanical behavior of sand-mask chip mixtures (e.g., soil’s strength and dilatancy) under different confining pressures. Additionally, the study analyzed the potential of mask chips in improving soil fabric, reducing contact force concentrations under shearing, and contributing to the soil’s stability. The results suggest that waste face masks could serve as a valuable resource for soil stabilization. This not only provides a viable solution for mask waste management but also introduces a novel, eco-friendly material that could improve the engineering properties of granular soils. The findings underscore the importance of understanding the interaction between waste masks and soil and open new pathways for the recycling of non-biodegradable waste in geotechnical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.