Abstract
Monowire block cutting machines can be used for natural stone block squaring and slab cutting operations. The plants where the cutting operations are performed demand high product quality with minimum operational costs. The major parameters affecting the economy of the operation are the energy consumed and the wear induced on the diamond beads during the cutting operation. An efficient cutting operation can only be maintained by selecting proper cutting parameters. Therefore, cutting parameters should be clearly understood. Experimental studies and numerical modeling methods are significant in terms of identifying the energy consumption occurring during natural stone cutting with monowire. Experimental studies and numerical modeling using discrete element method were performed on Afyon White Marble. Experimental studies have been performed by using a specially designed, fully automatic monowire cutting machine, and numerical analyses were carried out by commercially available software called three-dimensional particle flow code (PFC3D). A discrete element model for the cutting operation was developed, and various numerical models were performed for different peripheral speeds and cutting speeds, while, at the same time, the actual cutting operations were being carried out in the laboratory. Finally, the data obtained from the experimental works were compared with the data from numerical modeling. A comparison indicates that the frictional energy values obtained by means of numerical modeling are in good agreement with the results of the laboratory measurements. This study clearly put forward the influences of effective parameters on monowire cutting operations in natural stone industry. Furthermore, it filled an important space in the literature about the use of monowire block squaring machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.