Abstract

China’s first optical stereo mapping satellite with a sub-meter resolution, GaoFen-7 (GF-7), launched in November 2019, shows significant potential for providing high-resolution topographic and geomorphic data for quantitative research on active tectonics. However, no studies have evaluated the capability of the GF-7-generated digital elevation model (DEM) for quantitatively studying active tectonics. This study aimed to validate the accuracy of the DEMs extracted from GF-7 stereo imagery, with or without ground control points (GCPs), and evaluated the potential of applying GF-7 DEMs to active tectonics. First, GF-7 stereo images were processed to obtain DEMs with a spatial resolution of 2 m, utilizing three different methods, including block adjustment without GCPs, block adjustment with the aid of Google Earth images and SRTM DEM, and block adjustment with GCPs derived from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data. These three generated DEMs were called GF-7 DEMMethod1, GF-7 DEMMethod2, and GF-7 DEMMethod3, respectively, and were verified by the airborne LiDAR data in the Hasishan section of the Haiyuan fault. Second, the capability of the GF-7 DEMs for identifying active faults, fault scarps, and horizontal offsets was evaluated. Finally, 8 vertical and 13 horizontal offsets were measured based on three different GF-7 DEMs, and airborne LiDAR data were used to verify the measurements’ accuracies. The results indicated that the accuracy of GF-7 DEMMethod1 was the worst and that of GF-7 DEMMethod3 was superior to that of GF-7 DEMMethod2. The GF-7 DEMs could effectively identify the apparent fault scarps and horizontal offsets. The RMSE values of the vertical offsets measured based on GF-7 DEMMethod1, GF-7 DEMMethod2, and GF-7 DEMMethod3 were 0.55 m, 0.55 m, and 0.41 m, respectively. The horizontal offsets yielded RMSE values of 3.98 m, 2.52 m, and 1.37 m, respectively. These findings demonstrated that vertical and horizontal offsets could be accurately measured using the DEMs generated from GF-7 stereo images. Meanwhile, our study indicated that the GCPs derived from ICESat-2 data could be utilized to improve the accuracies of the GF-7 DEM, and the measurements of vertical and horizontal offsets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call