Abstract

Four sets of individual-particle crushing tests were carried out on sandstone grains of different size with geometric similarity. The tensile strength was analyzed using Weibull statistics, and the size-hardening law was obtained. The experimental data also validated that the Weibull modulus is independent of the grain size. Considering both the shear and tensile fracture modes of the particle, the Mohr–Coulomb model with a tension cut-off was employed as the fracture criterion of a single particle. When the particle stresses satisfied the fracture criterion, three new fragments modeled by the ‘clump’ were generated to replace the broken particle. Nine spheres with four different sizes were released from the clump and allowed to continue crushing if the fragment stresses fulfilled the criterion again. Two polydisperse assemblies with different particle sizes but same initial fabrics were prepared. DEM simulations of triaxial shear tests with different grain sizes were carried out on the crushable granular material with varied confining pressures. The simulated stress–strain–dilation responses were in agreement with the experimental observations. The macro–micro responses of the two samples, including the stress–strain–dilation behavior, the particle crushing, and the normal contact force distribution, were discussed in detail. The cause of the size effect on the shear strength and deformation was thoroughly investigated through a variety of mechanism demonstrations and micromechanical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call