Abstract

Railway ballast dynamic stability operations is an important work in the line maintenance and repair operations, the selection of dynamic parameter is usually dependent on field trials and practical experience, for lack of theoretical basis. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the lateral ballast resistance during dynamic stability process. We focus on the influence of vibration frequency during dynamic stability process; an optimal vibration frequency of the simulation analysis is obtained and compared with the recommended vibration frequency of a product of a China Railway Large Maintenance Machinery Company, it is found that the two vibration frequencies are basically consistent. This result verifies the correct validity of the discrete element analysis model of railway ballast during dynamic stability process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.