Abstract

Railway ballast particles undergo significant amount of breakage under repeated train load. Breakage of ballast particles, especially highly angular fresh ones, causes an increase in settlement, contributing to track degradation. The quantitative analysis of the influence of breakage on the stress-strain properties of ballast can be performed either experimentally or numerically. Numerical modeling has the advantage of simulating ballast breakage subject to various types of loading and different boundary conditions for a range of material properties. In this paper, ballast breakage under cyclic loading is simulated using a 2D discrete element method (DEM) utilizing the software PFC2D . A new subroutine is developed and incorporated in the PFC2D analysis to study ballast breakage and to quantify breakage in relation to particle size distribution. The influence of confining pressure on both breakage and permanent deformation is also studied and compared with laboratory observations. The findings of this paper provide an insight into the true ballast behavior under cyclic loading and are expected to assist railway practitioners in developing suitable design criteria for track stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.