Abstract
To illustrate the microstructural factors of grain refinement for enhancing mechanical properties, the fine-/ultrafine-grained TWIP steels with a product of strength and elongation of ∼71 GPa·% were first prepared by combining rolling and stress relief annealing. Subsequently, the evolution of dislocations, stacking faults, and associated substructures of the fine-/ultrafine-grained TWIP steels was analysed by using in-situ EBSD tensile tests and TEM characterisation of the interrupted strain experiments. The results reveal that the excellent mechanical properties of the TWIP steels are attributed to dislocations and associated dislocation cells, dislocation walls, dislocation tangles, stacking faults and associated Lomer-Cottrell locks (LCs), nano-twins, primary and secondary twins and their interactions during plastic deformation. The density of geometrically necessary dislocations (GNDs) was evaluated based on the modified Ashby's model and compared with experimental results, indicating that grain size heterogeneity can promote the accumulation of GNDs, which facilitates the generation of subgrains and new boundaries to reduce the mean free path (MFP) of dislocations, thus enhancing strain hardening. Meanwhile, the interaction of lamellar primary and secondary twins in fine grains and the generation of stacking faults and nano-twins in ultrafine grains at higher strains can further promote strain hardening to elevate strength. Furthermore, the effects of grain orientation and grain size on the activation and evolution of dislocations and twins were elucidated. In ultrafine grains, twinning is strongly inhibited due to the elevated critical shear stress for twinning, resulting in more stacking faults and nano-twins, but fewer dislocation cells. The present work contributes to an in-depth understanding of the mechanical properties of fine-/ultrafine-grained materials to exploit their potential for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.